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Abstract—Recent work has demonstrated great potentials of
neural network-inspired analog-to-digital converters (NNADCs)
in many emerging applications. These NNADCs often rely on
resistive random-access memory (RRAM) devices to realize basic
NN operations, and usually need high-precision RRAM (6–12 b)
to achieve moderate quantization resolutions (4–8 b). Such an
optimistic assumption of RRAM precision, however, is not well
supported by practical RRAM arrays in the large-scale pro-
duction process. In this article, we evaluate two new designs of
NNADC with low-precision RRAM devices. They take advantage
of traditional two-stage/pipelined hardware architecture and a
custom deep-learning-based building block design methodology.
Results obtained from SPICE simulations demonstrate a robust
design of an 8-b subranging NNADC using 4-b RRAM devices, as
well as a 14-b pipelined NNADC using 3-b RRAM devices. The
evaluations on the two NNADCs suggest that pipelined architec-
ture is better to achieve higher-resolution using lower precision
RRAM. We also perform design space exploration on the build-
ing blocks of NNADCs to achieve a balanced performance
tradeoff. Comprehensive comparisons reveal improved power,
speed performance, and competitive figure of merits (FoMs) of
the pipelined NNADC, compared with state-of-the-art NNADCs
and traditional ADCs. In addition, the proposed pipelined
NNADC can support reconfigurable high-resolution nonlinear
quantization with high conversion speed and low conversion
energy, enabling intelligent analog-to-information interfaces for
near-sensor processing.

Index Terms—High-resolution analog-to-digital converters
(ADCs), low-precision resistive random-access memory (RRAM),
neural network, nonlinear quantization.

I. INTRODUCTION

MANY emerging applications have posed new challenges
to design conventional analog-to-digital (A/D) con-

verters (ADCs) [1]–[6]. For example, multisensor systems
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require nonlinear A/D quantization to maximize the extrac-
tion of useful features from raw analog signals, instead of
the linearly uniform quantization performed by conventional
ADCs [3], [5], because the nonlinear quantization scheme
can alleviate the computational burden and reduce the power
consumption of digital backend processing, which is the dom-
inant bottleneck in intelligent multisensor systems. In addi-
tion, processing-in-memory (PIM) using nonvolatile memory
(NVM) crossbar arrays desires nonuniform quantization and
adaptive tuning of ADCs to satisfy the specific bitline compu-
tation mechanisms [2], [10]. However, such flexible quantiza-
tion schemes are not readily supported by conventional ADCs
with fixed conversion references and thresholds.

To overcome these inherent limitations of conventional
ADCs, recent works have introduced neural network-inspired
ADCs (NNADCs) as a novel approach to designing flexi-
ble and intelligent A/D interfaces [7]–[14]. The basic idea
behind NNADCs is that artificial neural networks (ANNs) can
be trained to approximate the desirable quantization function
of ADCs and these ANNs can be implemented on hard-
ware circuits in the analog domain. For instance, a learnable
8-b NNADC is presented to approximate multiple quantiza-
tion schemes where the NN weights are trained offline and
can be reconfigured by programming the same hardware sub-
strate [10], [11]. Another example is a 4-b neuromorphic
ADC proposed for general-purpose data conversion where the
NN weights are on-line trained by leveraging the input sig-
nal amplitude statistics and application sensitivity [9]. These
NNADCs are often built on resistive random-access memory
(RRAM) crossbar array to realize the basic NN operations,
with the potential to exceed the power-speed-accuracy tradeoff
in conventional ADC designs [9].

However, a major challenge to design such NNADCs is
the limited conductance/resistance precision of the RRAM
devices. Although measurement data from realistic RRAM
fabrication process suggest the actual RRAM precision tends
to be much lower (2–4-b) [15], [16], these NNADC designs
often optimistically assume the availability of RRAM technol-
ogy that can precisely program each cell with 6–12-b precision
which translates to 26∼212 distinctive conductance/resistance
levels. In addition, the stochastic variation of RRAM can affect
the NNADC’s resolution. For example, on average the res-
olution of NNADCs degenerates 3 b with 0.025 lognormal
variation [30], [31] in previous works [10], [11]. Therefore,
there exists a gap between the reality and the assumption of
the RRAM precision, yet lacks a design methodology to build
high-resolution NNADCs with low-precision RRAM devices.
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In this article, we explore to bridge this gap by evaluating
two new designs of NNADC. They are implemented by comb-
ing the advantage of traditional subranging/pipelined hardware
architecture and a custom deep-learning-based design method-
ology. The key idea of a subranging/pipelined hardware
architecture is that multiple consecutive low-resolution quanti-
zation stages can be cascaded into a two-stage/chain structure
to obtain higher resolution, as long as the residue part of the
signal can be amplified to full range and fed to the next quan-
tization stage. Since each stage now only needs to resolve low
resolution,1 we can instantiate them on the hardware substrate
with low-precision RRAM devices by accurately training NNs
to approximate the ideal quantization functions and residue
functions. Key innovations and contributions in this article are
as follows.

1) We propose a deep-learning-based design methodol-
ogy to implement a general analog/mixed-signal (AMS)
circuit, which enables robust and efficient design of
basic building blocks (e.g., sub-ADC, mixed-ADC, and
residue) in the subranging ADCs and pipelined ADCs.

2) We combine the subranging/pipelined hardware archi-
tecture and the deep-learning-based design methodology
to achieve two new designs of NNADC: 1) subranging
NNADC and 2) pipelined NNADC. SPICE simulation
results demonstrate that our proposed method enables
the robust design of an 8-b subranging NNADC and
a 14-b pipelined NNADC using 4-b RRAM and 3-b
RRAM, respectively. The evaluations on the two new
designs suggest that the pipelined architecture is superior
to achieve higher-resolution ADCs with lower precision
RRAM devices.

3) We systematically evaluate the impacts of NN size and
RRAM precision on the trained accuracy of the NN-
inspired sub-ADC, mixed-ADC, and residue block, and
perform design space exploration to search for optimal
pipelined stage configuration with the balanced tradeoff
between speed, area, and power consumption.

4) Thorough comparisons among the pipelined NNADC,
state-of-the-art NNADCs and traditional ADCs demon-
strate a competitive figure of merits (FoMs) of the
proposed pipelined NNADC. Our proposed pipelined
NNADC can also support reconfigurable high-resolution
nonlinear quantization with high conversion speed and
low conversion energy.

The remainder of this article is organized as follows.
Section II provides preliminary backgrounds and related works
on this research topic. A deep-learning-based building block
design methodology is proposed in Section III. The detailed
implementation of building blocks is presented in Section IV.
The designs of subranging NNADC and pipelined NNADC are
elaborated in Section V. Finally, we introduce the simulation
methodology in Section VI and show the evaluation results in
Section VII before concluding the article in Section VIII.

II. BACKGROUND AND RELATED WORK

To provide the background of our work, we first give a quick
overview of the RRAM technology and how its crossbar archi-
tecture enables the efficient implementation of an ANN. We
then briefly introduce some related works that have employed

1∼5-b for each stage in the two-stage architecture and 1–3 b for each stage
in the pipelined architecture

(a) (b)

Fig. 1. (a) Hardware substrate to perform basic NN operations. The pas-
sive crossbar array composed of two subarrays executes VMM. The VTC of
CMOS inverter acts as an NAF. (b) Example of a multilayer ANN whose two
adjacent layers are connected by weights.

NN-inspired principles to realize A/D conversion and summa-
rize the main challenges in current NNADC designs. Finally,
we review some conventional ADCs, such as subranging ADC
and pipelined ADC, that use low-resolution stages to achieve
high-resolution A/D quantization.

A. RRAM Device, Crossbar Array, and ANN

1) RRAM Device: An RRAM device is a passive two-port
element with variable resistance. It possesses many special
advantages, such as small cell size (4F2, F is the minimum fea-
ture size), excellent scalability (<10 nm), and faster read/write
time (<10 ns) and better endurance (∼1010 cycles) than Flash
devices [2], [17]–[19].

2) RRAM Crossbar Array: RRAM devices can
be organized into various ultradense crossbar array
architectures [10], [21]. Fig. 1(a) shows a passive cross-
bar array, composed of two subarrays, to realize bipolar
weights without using power-hungry operational-amplifiers
(op-amps) [10], [11]. The relationship between the input
voltage “vector” (�Vin) and the output voltage “vector” (�Vo)
can be expressed as follows:

Vo,j =
H∑

k=1

Wk,j · Vin,k + Voff,j, j ∈ {1, 2, . . . , M}. (1)

Here, k and j are the indices of input ports and output ports
of the crossbar array. The weight Wk,j can be represented by
the subtraction of two conductances in upper (U) subarray and
lower (L) subarray as

Wk,j = ε ·
(

gU
k,j − gL

k,j

)
, ε = 1/

H∑

k=1

(
gU

k,j + gL
k,j

)
. (2)

Therefore, the RRAM crossbar array can perform analog
vector-matrix multiplication (VMM), and the parameters of
the matrix rely on the RRAM resistance states. By configur-
ing the passive crossbar arrays into a dual-path architecture as
demonstrated in previous work [10], [11], a pair of comple-
mentary outputs can be obtained to feed as inputs to the next
stage.

3) ANN: With the RRAM crossbar array, an ANN shown
in Fig. 1(b) can be implemented on such hardware sub-
strate. Generally, the ANN processes the data by executing
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the following operations layerwise [34]:

�yi+1 = f
(

Wi,i+1 · �xi + �bi+1

)
. (3)

Here, �xi and �yi+1 represent the data in the ith and (i + 1)th
layer of the network. Wi,i+1 is the weight matrix to connect the
layer i and layer (i+1). f (·) is a nonlinear activation function
(NAF). These basic NN operations, e.g., VMM and NAF, can
be mapped to the RRAM crossbar array and CMOS inverter
shown in Fig. 1(a) as follows:

Vo,j = σ VTC

(
H∑

k=1

Wk,j · Vin,k + Voff,j

)
. (4)

Here, σ VTC(·) is the voltage transfer characteristic (VTC) of
the inverters. It can be used as an NAF [10], [20].

B. NNADCs

Analog-to-digital conversion can be viewed as a special case
of classification problems, which maps a continuous analog
signal to a series of multibit digital codes. An ANN can be
trained to learn this input/output relationship, and its hard-
ware implementation can be instantiated in the AMS domain.
This is the basic idea behind NNADCs, that is to implement
the learned ANN on a hardware substrate to approximate the
desired quantization functions for data conversion

M−1∑

i=0

2i · Di = round

(
Vin − Vmin

Vmax − Vmin
× (2M − 1

))
. (5)

Here, M is the resolution of ADC; Vin is an analog input and
Di is the ith digital output bit of the digital code; Vmin and
Vmax are the minimum and maximum values of the scalar input
signal Vin. Since RRAM crossbar array provides a promising
hardware substrate to build NNs, recent work has demon-
strated several NNADCs based on RRAM devices [7]–[13].
Although the NN architectures of these NNADCs vary from
Hopfield NN to multilayer perceptron (MLP), they all rely
on a training process to learn the appropriate NN weights to
accurately approximate flexible quantization schemes.

However, existing NNADCs often exhibit modest conver-
sion resolution (4–8-b). Even worse, they invariably rely on
optimistic assumption of RRAM precision (6–12-b) [7]–[13],
which is not well substantiated by measurement data from
realistic RRAM fabrication process [15], [16]. This reso-
lution limitation severely constrains NNADCs’ applications
in many emerging multisensor systems that require >10-b
A/D interfaces or precise nonlinear conversion of ana-
log signals for feature extraction and analog-to-information
processing [1], [3], [5], [36]. In fact, it has been demonstrated
in previous work [10] that training an A-bit (A ≤ 8) quanti-
zation resolution with moderate conversion speed requires at
least (A + 1)-bit RRAM device. This conclusion suggests a
direct tradeoff between achievable ADC resolutions, NN sizes,
and RRAM precisions [10].

C. Subranging ADCs and Pipelined ADCs

The subranging ADC shown in Fig. 2(a), and the pipelined
ADC shown in Fig. 2(b) are well-established ADC topolo-
gies to achieve high sampling rate and high resolution with
low-resolution quantization stages [22]. Usually, the subrang-
ing ADCs have a two-stage architecture. Each stage resolves

(a)

(c)

(d)(b)

Fig. 2. Two well-established ADC topologies. (a) General architecture of
subranging ADC. (b) General architecture of pipelined ADC. (c) Example
of the residue function when Ni = 1. (d) Example of a 4-b pipelined ADC
composed of four 1-b stages.

∼5-b quantization. The pipelined ADCs preserves a long chain
structure with a significant pipeline delay. Each stage in the
pipelined chain resolves 1–3-b quantization. Although they
have different numbers of stages, each of these stages shares
the same building blocks, e.g., sub-ADC and residue circuit.

The sub-ADC resolves an Ni-bit binary code DNi from input
residue ri−1; while the residue part amplifies the subtraction
between the input residue ri−1 and the analog output of sub-
DAC by 2Ni to generate the output residue ri for next stage.
This process can be expressed as a simple function

ri =
[
ri−1 − VRef

(
DNi

)] · 2Ni . (6)

Here, VRef(DNi) is the analog output of sub-DAC that depends
on DNi . For example, assuming ri−1 ∈ [0, VDD] and Ni = 1,
then VRef(0) = 0 and VRef(1) = VDD/2. And the corre-
sponding residue function is shown in Fig. 2(c). Since each
stage successively converts the analog input into its digital
representation, the final outputs of the subranging ADC and
pipelined ADC are (N1+N2)-bit and

∑M
i=1 Ni-bit digital codes,

respectively. Note that Ni is not necessarily identical in all
stages.

To understand the basic working principle of pipelined
ADCs [22], we use a 4-b pipelined ADC composed of four 1-b
stages as an example and illustrate the quantization steps in
Fig. 2(d). Assuming the initial analog input is 0.7 V (VDD =
1 V), then the sub-ADC in the first stage will output “1”—a
digital code, and the residue block will output “0.4 V”—an
analog residue according to (6). The analog residue will be
processed by the following stage in the same way as initial
analog input. Finally, we can obtain 4-b outputs 1011, which
is the quantization of 0.7 V (0.7/1 = 11.2/24 ≈ 11/24). To
understand how residue is amplified in the stage with more
than 1-b resolution, we would suggest the readers to look at
Fig. 5 in Section IV-C.
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(a)

(b) (c)

Fig. 3. Proposed deep-learning-based design methodology. (a) Distinct building blocks in subranging ADC and pipelined ADC. (b) Hardware substrate for
the general AMS circuit. For simplicity, we do not show the extra input of each layer (extra row connected to VDD or GND) for bias instantiation [11].
(c) Proposed training framework takes ground truth datasets as inputs during offline training to find the optimal set of weights associated with the RRAM
resistances to minimize the cost function and best approximate the ideal quantization function and residue function.

III. DESIGN METHODOLOGY OF BUILDING BLOCKS

To extend the architectures of subranging ADC/pipelined
ADC into NNADC’s design, we first characterize their distinct
building blocks in this section. We then demonstrate that these
distinct building blocks can be universally described using a
mathematical model of a general analog/mixed-signal (AMS)
circuit. Finally, we propose a deep-learning-based framework
to design the general AMS circuit, which enables robust
and efficient implementation of basic building blocks in the
subranging ADCs and pipelined ADCs.

A. Characterization of Building Blocks

It can be observed in Fig. 2(b) that each stage (except for
the last stage) in the pipelined ADC consists of two build-
ing blocks: 1) sub-ADC and 2) residue. The subranging ADC
has only two stages. A better way to characterize its distinct
blocks is shown in the red dashed box in Fig. 2(a), which is to
combine the residue in the first stage and the sub-ADC in the
second stage. We name this block mixed-ADC, as it directly
generates digital codes by using mixed-signal inputs (initial
analog input and the digital output from the sub-ADC in the
first stage). This characterization has two advantages: 1) only
two hardware NNs2 are required to construct a subranging
NNADC instead of using three hardware NNs, saving hard-
ware resources and 2) resolution can be improved compared
with the subranging NNADC constructed using three hard-
ware NNs. In summary, there are totally three distinct building
blocks in our design: sub-ADC, mixed-ADC, and residue, as
illustrated in Fig. 3(a).

B. Mathematical Formulation of General AMS Circuits

The basic building blocks in Fig. 3(a) belong to a class
of AMS circuit with a specific input/output relationship.
For example, the sub-ADC is an AMS circuit with analog
input and digital output, whose ideal input/output relation-
ship satisfies (5). Similarly, the residue block is an AMS

2As discussed in Section IV-A, each building block is built on a three-layer
hardware substrate.

circuit with mixed-signal input and digital output, whose
ideal input/output relationship satisfies (6). All these building
blocks can be represented by a general AMS circuit whose
inputs and outputs can be expressed as a simple mathematical
function

VOUT = f (VIN). (7)

Here, VIN = {INA, IND} are the mixed-signal inputs of the cir-
cuit; VOUT = {OUTA, OUTD} are the mixed-signal outputs of
the circuit. Note that the subscript “A” indicates “Analog,” and
“D” indicates “Digital.” For instance, sub-ADC can be con-
sidered as a specific case of this general AMS circuit without
IND and OUTA.

C. Deep-Learning-Based Design Methodology

To evaluate the performance of NNADCs designed with
two-stage and pipelined architecture, the first step is to form
an effective design methodology for this type of general AMS
circuit. Then each building block can be efficiently imple-
mented as a specific case of the general AMS circuit. The
design methodology contains two steps: 1) hardware substrate
and 2) training framework, which are discussed as follows.

1) Hardware Substrate: To implement the general AMS
circuit, we use the RRAM crossbar array3 and CMOS inverter
illustrated in Fig. 1(a) as the hardware substrate. The cor-
responding hardware architecture is illustrated in Fig. 3(b).
It preserves a three-layer NN architecture, because universal
approximation theorem proves that a feedforward three-layer
NN with a single hidden layer can approximate arbitrary func-
tions [25], [26]. As the Fig. 3(b) shows, the general AMS
circuit has (1+M) input neurons (one analog input and M-bit
digital inputs), and (1+N) output neurons (one analog output
and N-bit digital outputs). Note that the hardware substrate can
be generalized to both discrete-time systems and continuous-
time systems. For the discrete-time systems, 3-input NAND

3Each weight cell in the RRAM array consists of one transistor and one
memristor (1T1R) and can operate in both compute mode and program mode.
For simplicity, we use 1R cell to represent the practical 1T1R cell in this
article.
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gates [45] placed in the output layer are used to perform dig-
itization while the sampling/hold (S/H) circuit is used as the
“place holder” neuron for analog output to drive the next stage.
A CMOS source follower-based S/H buffer circuit used in our
design is shown in the inset of Fig. 3(b).

2) Training Framework: We propose a hardware-oriented
training framework for the general AMS circuit. It can accu-
rately capture the circuit-level behavior of the hardware
substrate and learn the associated hardware design param-
eters (e.g., RRAM conductance), to approximate the ideal
input/output relationship of the general AMS circuit. The
training framework possesses one important feature: nonide-
alities of devices, such as process, voltage, and temperature
(PVT) variations of CMOS device, and the limited precision
of RRAM devices, can be incorporated into training to make
the general AMS circuit robust to these defects [27]. This is
the advantage of the NN-inspired design of general AMS cir-
cuits over the traditional design of AMS circuits, where, even
with delicate calibration techniques, the nonidealities cannot
be effectively mitigated [24]. The detailed training flow is
shown in Fig. 3, which consists of the following four steps.

1© Learning Objective Construction: The general AMS
hardware substrate in Fig. 3(b) can be modeled as a three-
layer NN

h̃ = L1(VIN; θ1), h = σ VTC

(
h̃
)
, VOUT = L2(h; θ2). (8)

Here, VIN = {INA, IND} are the mixed-signal inputs for the
AMS circuit. h̃ denote voltages at the output of the first cross-
bar layer. They are modeled as a linear function L1 of VIN
with learnable parameters θ1 = {W1, V1}, corresponding to
the weights and bias associated with the first layer required to
be learned from the training. Each of these voltages is passed
through an inverter, whose input-output relationship is mod-
eled by a nonlinear function σ VTC(·), to yield the vector h.
The linear function L2 models the second layer of the crossbar.
It produces the output VOUT = {OUTA, OUTD} with learnable
parameters θ2 = {W2, V2}, corresponding to the weights and
bias associated with the second layer required to be learned
from the training. The learning objective is to find optimal
values for the parameters {θ1, θ2} (corresponding to RRAM
crossbar array conductances) such that for all values of VIN in
the input range, the circuit yields corresponding output VOUT
that are equal or close to the desired “ground truth” VOUT,GT
in (7). Toward this goal, we define a cost function to mea-
sure the discrepancy between predicted VOUT and true VOUT,GT
based on the mean-square loss

C
(
VOUT, VOUT,GT

) =
∑

j

(
fdisc

(
VOUT,GT(j)− VOUT(j)

))2
. (9)

Here, fdisc means various mathematical functions to measure
discrepancy, such as L2 norm, and cross-entropy. It is chosen
depends on the practical learning objective.

2© Model Hardware Constraints: Hardware constraints
come from three aspects: 1) CMOS neuron PVT variations;
2) limited precision of RRAM device; and 3) passive crossbar
array. To reflect these hardware constraints, we first group all
VTCs obtained by Monte Carlo simulations as AVTC, using the
technology specification in Section VI. Meanwhile, we con-
trol the precision of weight with AR-bit during the training.
Finally, we let the summation of all elements (their absolute

value) in each column (“0”) of W1 and W2 be less than 1
∑

(abs(W1), 0) < 1;
∑

(abs(W2), 0) < 1 (10)

to reflect the weight constraints in (2).
3© Hardware-Oriented Training: We initialize the parame-

ters {θ1, θ2} randomly, and update them iteratively based on the
gradients computed on the mini-batches of {(VIN, VOUT,GT)}
pairs, which are randomly sampled from the input range. To
incorporate the hardware constraints in step 2© into training,
we let each neuron j in (8) randomly pick up a VTC from
AVTC during training

σ
j
VTC = AVTC

[
frandint(NVTC)

]
, j = 1, 2, . . . , H. (11)

Here, frandint(NVTC) is a function to generate a random inte-
ger smaller than NVTC. A detailed discussion of incorporating
PVT variations into training can be found in our previous
work [11]. We then periodically clip all values of W1 between
[−1/(1+M), 1/(1+M)] to satisfy (10). To make W2 satisfy
the constraint in (10) as well, corresponding technique will be
applied based on different training objectives. The details will
be discussed in Section IV-B.

4© Instantiate Design Parameters: We adopt the same
instantiation method in previous work [10], which is proven
to always find a set of equivalent RRAM conductances for the
trained weights. After this, we perturb each resistance R in the
hardware substrate by

R← R · eθ ; θ ∼ N (0, σ ) (12)

to evaluate the robustness of the NN model toward the
stochastic variation of RRAM resistance [30], [31].

IV. IMPLEMENTATION OF BUILDING BLOCKS

After presenting the NN-inspired design methodology for
the general AMS circuit, in this section, we elaborate how
to implement the different building blocks. We first show the
detailed hardware architecture of each distinct building block
and then present the key training specifications based on their
specific input/output relationship.

A. Hardware Implementation of Building Blocks

All distinct building blocks preserve a similar three-layer
NN architecture and are implemented with the RRAM crossbar
array and CMOS inverter illustrated in Fig. 1(a). A minor
difference exists between different building blocks in NN size
and the types of input/output neurons.

1) Sub-ADC: For sub-ADC, the input analog signal repre-
sents the single “place holder” neuron in MLP’s input layer.
Therefore, the weight matrix dimensions are HF,i×1 between
the hidden and input layer, and HF,i × Si between the hidden
and output layer, assuming there are HF,i and Si neurons in the
hidden and output layer, respectively. Here, we use a redundant
“smooth” Si → Ni encoding method to replace the standard
Ni-bit binary encoding with Si bits (Si > Ni) according to
our previous work [10], as it improves the training accuracy
and reduces hidden layer size of the sub-ADC. To help the
readers understand the concept of smooth encoding, we briefly
reclarify its definition here. The readers can refer our previous
work [11] for details. Smooth codes represent each of the 2Ni

levels binary codes with Si-bit unique codewords, adhering
to two important principles. First, only one bit changes its
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value between two consecutive levels, a property similar to
“Gray codes.” Second, each bit in Si-bit unique codewords
(2Ni levels) flips a minimum number of times. Given a group
of parameters Ni and Si, the Si-bit codewords start with an
all-zero bits codeword for the lowest level in the 2Ni unique
levels, and then flip the bit that was least recently flipped for
each subsequent level. For example, we use 3 → 2 smooth
encoding to train a 2-b sub-ADC with 3-b smooth codes as out-
put in Fig. 5(a). A one-to-one mapping between a 3-b smooth
code and a 2-b binary code is “000 → 00,” “001 → 01,”
“011→ 10,” and “111→ 11.”

2) Mixed-ADC: For mixed-ADC, there are (1 + S1) input
neurons (one analog input and S1 digital inputs), and S2 output
neurons. Therefore, the weight matrix dimensions are H2×(1+
S1) between the hidden and input layer and H2 × S2 between
the hidden and output layer, assuming H2 hidden neurons.
Note that the digital output S2 is also a smooth code.

3) Residue: For residue, there are (1 + Si) input neurons
(one for analog input and Si for digital inputs), and only one
analog output neuron. Therefore, the weight matrix dimen-
sions are HR,i × (1+ Si) between the hidden and input layer,
and HR,i × 1 between the hidden and output layer, assuming
there are HR,i hidden neurons. Note that since the op-amps
and comparators in Fig. 2 are eliminated in the NN-inspired
design of sub-ADC, mixed-ADC, and residue, considerable
power saving can be obtained from each stage.

B. Training of Building Blocks

We focus on describing some key specifications for training
mixed-ADC and residue, as similar strategies for training sub-
ADCs have been elaborated in previous work [10]. The main
procedures to train a mixed-ADC and a residue follow the
steps in Section III-C, but have some modifications in steps
1© and 3© based on different learning objectives.

1) Mixed-ADC: For mixed-ADC, its output is an S2-bit
smooth digital code; therefore, its hardware substrate can be
modeled by adapting (8) as follows:

h̃ = L1
(
Vin, DS1; θ1

)
, h = σ VTC

(
h̃
)

D̃S2 = L2(h; θ2), DS2 = D̃S2 > 0. (13)

Here, DS1 indicates the digital output from the sub-ADC in
previous stage (“1” means VDD, and “0” means GND). The
final output bit-vector DS2 is obtained by thresholding: yield-
ing 0 for each element of D̃S2 that is below 0, and yielding 1,
otherwise. The learning objective is to find optimal values of
parameters {θ1, θ2} such that for all values of {(Vin, DS1)} in
the input range, the circuit yields corresponding digital output
DS2 that are equal or close to the desired “ground truth” D GT
in (5). To achieve this aim, the cost function in (9) can be
adapted using the following cross-entropy loss:

C
(
D̃S2, D GT

) =
M∑

i=1

[
DGTi log

(
1+ e−D̃S2,i

)

+ (1− D GTi) log
(

1+ eD̃S2,i
)]2

. (14)

To make the second layer weight W2 satisfy the constraint
in (10), we first normalize both W2 (and proportionally V2)
such that the sum of all the elements (their absolute value)
across the same column is less than magnitude 1

W ′2 = W2/α, V ′2 = V2/α. (15)

Here, α = β ·∑(abs(W2), 0) is a normalization coefficient.∑
(abs(W2), 0) represents the summation of all elements (their

absolute value) in the same column. β > 1 is a scaling factor.
2) Residue: For residue block, its output is an analog value;

therefore, the hardware substrate can be modeled as

h̃i = L1
(
ri−1, DSi; θ1,i

)
, hi = σ VTC

(
h̃i

)

ri = L2
(
hi; θ2,i

)
. (16)

Here, i is the index of stage-i (i ∈ {1, . . . , M}); DSi indicates
the digital output of the sub-ADC; ri−1 is the scalar residue
input of stage-i. The learning objective is to find optimal values
for {θ1,i, θ2,i} such that for all ri−1 in the input range, the
circuit yields corresponding residue ri that are equal or close
to the desired “ground-truth” r GT in (6). To achieve this aim,
the cost function in (9) can be adapted as

C(ri, r GT) =
∑

j

[
r GT(j)− ri(j)

]2
. (17)

We find that when Ni = 1, 2, the residue function can be
trained to the full range by periodically clipping all values
of W2 between [−1/HR,i, 1/HR,i] to satisfy (10). However,
the same method is invalid when applied to train the residue
function of Ni = 3. As the last row of Fig. 5(b) shows, the
residue function of Ni = 3 is highly nonlinear which is hard to
be accurately approximated by training a moderate size NN
with constrained W2. Therefore, during the training, we do
not put any constraints on W2 such that a moderate size NN
can be trained to accurately approximate the residue function.
After training, we use the same method shown in (15) to nor-
malize the trained W2 to make it satisfy (10). Although this
method also results in the scaled predicted residue range,4 the
following sub-ADC can be accurately trained to quantize this
analog signal with scaled range. The last row of Fig. 5 gives
an example that even with an input dynamic range as low as
∼0.1 V, the NN can still yield 3-b quantization.

C. Examples of Trained Building Blocks

During the training, we tried to train various pairs of sub-
ADC and mixed-ADC for subranging NNADC, and different
pairs of sub-ADC and residue for pipelined NNADC. We find
that the mixed-ADC can be trained to accurately approximate a
maximum 3-b resolution with a moderate size NN. In addition,
residue is hard to be accurately trained using a moderate size
NN when Ni ≥ 4. Here, we show three pairs of sub-ADC
and mixed-ADC with different resolutions (N1 = 3, 4, 5, and
N2 = 2, 2, 3), and three pairs of sub-ADC and residue block
with different resolutions (Ni = 1, 2, 3) using the simulation
methodology described in Section VI.

Since our designs are based on a dual-path architecture
to perform “pseudodifferential” operation, we evaluate the
trained performance of building blocks by using the input
ranges when the positive input voltage is higher than the
negative one. Fig. 4 illustrates the SPICE simulation of dif-
ferent trained pairs in subranging NNADC. The sub-ADCs
in Fig. 4(a) are trained through a 1 × 4 × 4, 1 × 10 × 8,
and 1 × 10 × 10 NN, respectively; while the mixed-ADCs
in Fig. 4(b) are trained through a 5× 6× 3, 9× 10× 4, and

4The dynamic range of the predicted residue function changes from
[0, VDD] to [VDD/2− VDD/(2α), VDD/2+ VDD/(2α)].
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(a) (b)

Fig. 4. Illustrations of trained sub-ADC and mixed-ADC with different reso-
lutions in subranging NNADC. (a) Sub-ADC (N1 = 3, 4, 5). (b) Mixed-ADC
(N2 = 2, 2, 3).

11×12×6 NN, respectively. In both figures, we use 4-b RRAM
device and set σ = 0.05 in (12) for evaluation. Note that we
only show a small fraction ([0, 1/2N1 ]), N1 = 3, 4, 5) of the
reconstructed signal in the full input range.5 Fig. 5 illustrates
the SPICE simulation of different trained pairs of pipelined
NNADC. The sub-ADCs in Fig. 5(a) are trained through a
1 × 3 × 2, 1 × 4 × 3, and 1 × 4 × 4 NN, respectively; while
the residue blocks in Fig. 5(b) are trained through a 3×5×1,
4 × 7 × 1, and 5 × 7 × 1 NN, respectively. In both figures,
we use 3-b RRAM device and set σ = 0.05 in (12) for eval-
uation. The comparison between the trained function and the
ideal function shows that each pair with low-precision RRAM
can accurately approximate the ideal stage function with the
aid of the proposed design methodology. Note that: 1) the
signal reconstructions of sub-ADC and mixed-ADC are-based
the method proposed in our previous work [11] and 2) the
reconstructed signal of sub-ADC is not applied as VRef(DNi)

in (6).

V. IMPLEMENTATION OF NN-INSPIRED ADCS

In this section, we employ the NN-inspired building blocks
implemented in the previous section into the traditional
two-stage/pipelined architecture to construct the subranging
NNADC and the pipelined NNADC. We first introduce the
system level hardware architecture of these NNADCs. Then,

5For each fraction [j/2N1 , (j + 1)/2N1 ], where N1 = 3, 4, 5; j =
0, 1, 2, . . . , 2N1 − 1, in the full range of the input signal, the reconstructed
signal shows almost the same shape. We just show the reconstructed signal
in [0, 1/2N1 ] as an example.

(a) (b)

Fig. 5. Illustrations of trained sub-ADC and residue functions for a pipeline
stage with different resolutions. (a) Sub-ADC (Ni = 1, 2, 3). (b) Residue
(Ni = 1, 2, 3).

we show some system level training strategies to improve
the performance of these NNADCs. Finally, we present the
advantages of co-design that combines NN-inspired design
methodology with traditional two-stage/pipelined architecture.

A. Hardware Architecture of Full NNADCs

The hardware architecture of the proposed subranging
NNADC is presented in Fig. 6(a), where two three-layer NNs
are adopted in the full NNADC design, and each of them
can be mapped into the corresponding sub-ADC and mixed-
ADC shown in Fig. 2(a). Similarly, the overall architecture
of the proposed pipelined NNADC is presented in Fig. 6(b),
where a pipelined architecture of cascaded conversion stages
is adopted in the design. For stage-i in the proposed pipelined
NNADC, we use two three-layer NNs to implement it, and
each of them can be mapped into the corresponding sub-ADC
and residue block shown in Fig. 2(b). A digital combiner
designed by simple sequential circuits is used to synchro-
nize each blocks’ output to achieve the total resolution for
the proposed subranging NNADC and pipelined NNADC.

B. Training Strategy of Full NNADCs

To improve the performance of full NNADCs, an impor-
tant technique used in our design is the collaborative (end to
end) training of building blocks. For the subranging NNADC,
as illustrated in Fig. 3(a), the inputs of mixed-ADC include
the original analog signal VIN and the N1-bit digital outputs
from the previous sub-ADC. Therefore, the sub-ADC is first
trained to approximate the ideal quantization function with
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(a) (b)

Fig. 6. Hardware architectures of the proposed NNADCs. (a) Subranging NNADC. (b) Pipelined NNADC. For simplicity, we do not show the extra input
of each layer (extra row connected to VDD or GND) for bias instantiation [11].

high fidelity, then its digital outputs and original analog inputs
are used as ground truth data to train mixed-ADC. Similarly,
for each stage in the pipelined NNADC, the sub-ADC is
initially trained to approximate the ideal quantization func-
tion with high fidelity, then its digital outputs and original
analog inputs are directly used as ground truth data to train
residue block. Compared with the independent design of build-
ing blocks in traditional ADCs, the collaborative training flow
can effectively minimize the discrepancy between the training
or circuit artifacts and the ideal conversion at each stage.

C. Co-Design Analysis

The co-design of combining two-stage/pipelined architec-
ture and deep-learning-based design methodology brings two
direct benefits. First, each stage in the proposed NNADCs
now only needs to resolve low-resolution quantization (∼5-b
for each stage in subranging NNADC, and 1∼3-b for each
stage in pipelined NNADC), which can be well achieved
within the precision limit of current RRAM fabrication
process [15], [16]. With the aid of the training framework
in Section III, we can also automatically derive the optimal
design of the low-resolution stages [10]. Second, although
many cascading stages are needed in the pipelined NNADC,
there only exist three distinct low-resolution configurations to
choose for each stage, namely, Ni = 1, 2, 3. This allows us
to simplify the design process by focusing on optimizing the
sub-blocks of each stage. The full pipelined system can then
be assembled by iterating through different combinations of
the building blocks with different resolution configurations.

VI. SIMULATION METHODOLOGY

In this section, we present the detailed methodology used in
our simulation setup to train, design, and evaluate the proposed
NNADCs. We first summarize the configurations used in our
training setup, and then present the technology model to design
the hardware substrate. Finally, we introduce the metrics to
evaluate the trained accuracy of each building blocks.

A. Training Configuration

We set N1 = 3, 4, 5 and N2 = 2, 2, 3 to get three pairs of
sub-ADC and mixed-ADC for subranging NNADC, and set
Ni = 1, 2, 3 to get three pairs of sub-ADC and residue for each
stage in pipelined NNADC. For each pairs, we train different
NN models. Each NN model is trained via stochastic gradi-
ent descent with Adam optimizer [28] using TensorFlow [29].
The moderate size (NIN × NH × NO) of each NN model is
constrained by NIN ≤ 12, NH ≤ 12, and NO ≤ 10 based on
previous work [2]. We incorporate both CMOS PVT varia-
tions and the limited precision AR of the RRAM device into
training. The weight precision AR during training is set to be
1–7 b [42]. The batch size is 4096, and the projection step
is performed every 256 iterations on Wi, i = 1, 2. We train
a total of 2×104 iterations for each sub-ADC, mixed-ADC,
and residue model, varying the learning rate from 10−3 to
10−4 across the iterations. The training time for each block is
generally less than 10 min on a single TITAN GPU.

B. Technology Model

We use the HfOx-based RRAM device model to simu-
late the crossbar array [32], [33]. Since we use the passive
crossbar array [10] to achieve VMM, and the input ana-
log signal has small amplitude, the voltage drop across the
device is small; therefore, the I−V relationship of the RRAM
can be considered as linear in our work.6 We use nonover-
lapping linearly spaced RRAM conductance to build each
weight cell. We choose a moderate variation σ = 0.05 in
our evaluation from a broad range of RRAM literature [27],
[34], [35], [40], [41], which is equivalent to ±15% in 3σ

range. RRAM endurance can be up to 1010 according to
previous works [2], [17]–[19]. Although the retention time of
different RRAM devices can vary from hundreds of ms to
years [46]–[53] especially under extreme operating tempera-
tures, most state-of-the-art works [48]–[52] show that they can

6The nonlinearity of RRAM due to large crossing voltage will result in
the computation error of RRAM crossbar array, degenerating the resolution
of NNADC. One can replicate more devices in each cell and connect them
serially to reduce the voltage drop of each RRAM.
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TABLE I
SIMULATION CONFIGURATION PARAMETERS

ensure 10-year retention without conductance drifting at 85◦C.
Therefore, the NNADC is able to handle typical applications
over a long period and can also be calibrated by reprogram-
ming the device as long as the endurance is still in its working
range in spite of any long-term drifts. The transistor model is
based on a standard 130-nm CMOS technology. The invert-
ers, output comparators, and transistor switches in the RRAM
crossbars are simulated with the 130-nm model using Cadence
Spectre. The VTC group AVTC is obtained by running Monte
Carlo simulations 100 times using the methodology in our
previous work [11]. Due to the small size of RRAM crossbar
array and the short distance of the connection between layers,
the wire parasitic resistance is negligible and can be reasonably
ignored. We perform extensive SPICE simulations to deter-
mine the optimal inverter sizing to ensure sufficient driving
strength under the worst-case loading effect from the subse-
quent layer. Configuration parameters from both the training
setup and the technology model are summarized in Table I.

C. Metric of Trained Accuracy

The accuracy of sub-ADC, mixed-ADC, and NNADC is
represented by the effective number of bit (ENOB)—a met-
ric to evaluate the effective resolution of an ADC. We report
ENOB based on its standard definition ENOB = (SNDR −
1.76)/6.02, where the signal to noise and distortion ratio
(SNDR) is calculated from the following equation:

SNDR = 10 · log10

( ∑N
i=1(VRec(ti))2

∑N
i=1(VIN(ti)− VRec(ti))2

)
. (18)

Here, VIN is the original input signal; VRec is the reconstructed
signal based on the digital bits from SPICE simulation; and
the samples are performed across multiple clock periods. The
trained accuracy of the residue block is represented by the
mean-square error (MSE) between the predicted residue func-
tion and ideal residue function. We report the MSE based on
2048 uniform sampling points in the full range of input. The
power, differential nonlinearity (DNL), integral nonlinearity
(INL), and max conversion speed are obtained from the SPICE
simulation. Specially, the INL and DNL are calculated based
on the simulation data according to their standard definitions.

VII. EVALUATION RESULTS

In this section, we perform comprehensive evaluations on
subranging NNADC and pipelined NNADC. We start to com-
pare the building blocks of two NNADCs. We then perform
design space exploration to find optimal stage configuration
in each NNADC with balanced tradeoff between speed, area,
and power consumption, based on which we also investigate
the tradeoff between these two NNADCs. Since pipelined
NNADC has greater potential to achieve higher-resolution with
lower precision RRAM, we finally evaluate the performance of
the proposed pipelined NNADC with various state-of-the-art
ADCs, such as NNADCs, nonlinear ADCs, and conventional
pipelined ADCs.

A. Block-Level Comparisons

We first investigate the relationship between the trained
accuracy and RRAM precision of each building block with
different NN sizes. In these simulations, we incorporate both
CMOS PVT variations and limited precision of the RRAM
device into training, and then instantiate several batches of
100-run Monte Carlo simulations with a resistance variation
σ = 0.05 in (12), and finally compute the median trained
accuracy of each model.

We plot such trends for the building blocks of two NNADCs
in Figs. 7 and 8, respectively. Generally, an (N1 + 1)-bit
[(N2 + 1)-bit] RRAM precision is enough to accurately train
an NN model to approximate an N1-bit sub-ADC (N2-bit
mixed-ADC) in subranging NNADC, which conforms with the
conclusion in previous work [10]. Particularly, larger size NN
models with more hidden layer neurons and output neurons
can even accurately approximate an N1-bit sub-ADC (N2-bit
mixed-ADC) with N1-bit (N2-bit) RRAM precision. Similar
conclusions can also be made from the trained accuracy of
building blocks in pipelined NNADC. As the Fig. 8 shows, an
(Ni+ 1)-bit [(Ni+ 2)-bit] RRAM precision is enough to train
an NN model to accurately approximate an Ni-bit sub-ADC
(residue block). Moreover, a larger size NN with more hidden
layer neurons can accurately approximate the residue circuit
of Ni-bit stage with (Ni + 1)-bit RRAM.

However, the comparison between the sub-ADC of sub-
ranging NNADC and the sub-ADC of pipelined NNADC
shows that training ≥4-b sub-ADC with low-precision RRAM
requires a larger size NN. The reason is that the nonlinear-
ity of the quantization function [equation (5)] becomes more
evident7 as the resolution of sub-ADC increases. To approx-
imate such highly nonlinear functions, a larger size NN with
more neurons is required. It can also be observed that the
mixed-ADC following the sub-ADC can resolve only 2–3-b
quantization even with a large size NN. This is because mixed-
ADC actually includes two functions (e.g., residue function
and sub-ADC quantization function). It can achieve only low
resolutions even if a large size NN is applied to approxi-
mate such complex functions. However, it is worth noting that
when N1≤3, both the sub-ADC and the following mixed-ADC
can be accurately approximated with small size NNs and low
precision RRAM (3 b), which indicates that a two-stage archi-
tecture of subranging ADC is better to achieve ≤5-b NNADCs
with fewer stages and simpler hardware structure.

7Least significant bit (LSB) of sub-ADC will flip 2M times according to (5)
during the total quantization levels.
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(a) (b)

Fig. 7. Building block training performance using different NN models
and RRAM precision at a fixed stochastic variation σ = 0.05 in subranging
NNADC. Note that each row is a pair. (a) Trend between ENOB and RRAM
precision of sub-ADC under different NN models, where N1 = 3, 4, 5. (b)
Trend between ENOB and RRAM precision of mixed-ADC under different
NN models, where N2 = 2, 2, 3.

Previous works [7]–[14] show that the total units of an
NNADC with the size of 1× (NH×NO scale with the targeted
resolution N in a cubic trend ((NH × NO) ∼ N3). Here, NH
is the number of hidden units, which is usually proportional
to N2; and NO is the number of output neurons. The similar
trends can also be observed from the building blocks shown
in Figs. 7 and 8, where the size of sub-ADC and residue cubi-
cally scales with the resolution. Such a relationship provides
a first-order estimation for the required total units (TUnits) to
achieve an N-bit NNADC:

{
TUnits ∼∑M

i=1(Ni)
3

N =∑M
i=1 Ni.

(19)

Here, M is the number of stages required for the pipelined
NNADC and Ni is the resolution of each stage.

B. Design Exploration

1) Design Tradeoff of Building Blocks: Based on the study
of building blocks in Section VII-A, we can design high-
fidelity low-resolution stages with small size NNs to achieve:
1) a moderate resolution subranging NNADC in a two-stage
architecture and 2) a high-resolution pipelined NNADC by
combining different low-resolution stages in a pipelined chain.
However, each stage-i has design tradeoff among power con-
sumption Pi, sampling rate fS,i and area As,i. A completed
design space exploration involves the searching of different
NN sizes of each building block in stage-i, RRAM precision,
and stochastic variations. Here, we use one pair of building
blocks in the first row of Fig. 7, and three pairs of building

(a) (b)

Fig. 8. Building block training performance using different NN models
and RRAM precision at a fixed stochastic variation σ = 0.05 in pipelined
NNADC. Note that each row is a pair. (a) Trend between ENOB and RRAM
precision of sub-ADC under different NN models, where Ni is set as 1, 2,
3. (b) Trend between MSE and RRAM precision of residue circuit under
different NN models, where Ni is set as 1, 2, 3.

blocks in Fig. 8 as an example to illustrate the design trade-
off. Note that each of them (highlighted in red solid boxes)
shows enough accuracy and robustness with no more than 4-b
RRAM precision. For the subranging NNADC, each building
block is a distinct stage which has resolution N1 = 3 and
N2 = 2, respectively. For the pipelined NNADC, we combine
each pair of building blocks in Fig. 8 to form three distinct
stages with resolution Ni = 1, 2, 3, respectively. During the
simulation, we fix the precision of the RRAM device at 3-b
for all building blocks except for the residue in Ni = 3 stage,
where a 4-b RRAM is used. We finally study the relation-
ship between the power (E), speed (f ), and area (A) of each
distinct stage of two NNADCs by simulating the minimum
power consumption/area of each distinct stage that works well
at different sampling rates.

The trends are plotted in Fig. 9, which shows clear trade-
offs between speed and power consumption, as well as speed
and area, for each distinct stage. In order to make each build-
ing block work well under faster speed, we need to increase
the driven strength of the neurons by sizing up the inverters,
which results in an increase of power consumption and area
of each stage. A further comparison shows that at the same
resolution, the distinct stage of subranging NNADC is more
energy-efficient and has smaller area than the distinct stage of
pipelined NNADC. The benefits come from the simpler imple-
mentation of each stage in the subranging NNADC, where the
residue is not required to be approximated.
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TABLE II
PERFORMANCE COMPARISON WITH DIFFERENT TYPES OF ADCS

(a) (b)

Fig. 9. Design tradeoffs of three distinct stages (Ni = 1, 2, 3) in pipelined
NNADC and two stages (N1 = 3 and N2 = 2) in subranging NNADC.
(a) Power versus speed. (b) Area versus speed.

2) NNADCs Design Tradeoff: Subranging NNADC has
fewer stages and simpler implementation of each stage.
Pipelined NNADC has more stages and more complex imple-
mentation of each stage. Therefore, there exists tradeoff
between these two NNADCs. To make a fair comparison, we
first fix the precision of the RRAM device at 3 b. Under this
condition, the subranging NNADC can achieve a maximum
5-b resolution by cascading the 3-b sub-ADC and 2-b mixed-
ADC shown in Fig. 7. We find that to achieve the same 5-b
resolution, subranging NNADC is more energy-efficient and
has smaller area no matter how the pipelined NNADC com-
bines its low-resolution stages. We then relax the precision
of the RRAM device to 4-b and explore the maximum res-
olution that subranging NNADC can achieve. Our SPICE
simulations show that an 8-b subranging NNADC with 7.3-b
ENOB can be achieved by combining the 5-b sub-ADC and
3-b mixed-ADC (highlighted in red solid box) shown in Fig. 7.
Conversely, although each stage of pipelined NNADC resolves
only 1–3-b quantization, it can achieve a much higher resolu-
tion by cascading many lower resolution stages. As shown in
Section VII-C, we can achieve a 14-b pipelined NNADC by
cascading nine 1-b stages, one 2-b stage, and one 3-b sub-ADC
and using 3-b RRAM.

In conclusion, with 3-b RRAM, subranging NNADC has
higher energy-efficiency and smaller area to achieve a low-
resolution (≤5-b) NNADC, while pipelined NNADC is a
better architecture to achieve high-resolution (≥6-bit) NNADC
whose maximum resolution is 14-b by cascading more
low-resolution stages. In the following sections, we focus on
evaluating the pipelined NNADC due to its higher-resolution.

(a) (b)

Fig. 10. (a) Reconstruction of a 14-b pipelined NNADC with 3-b RRAM
whose pipelined chain consists of eleven stages: nine 1-b stages, one 2-b
stage, and one 3-b sub-ADC. (b) SNDR trend of the proposed NNADC.

3) Design Optimization: Based on the exploration of dif-
ferent building block configurations, an optimal design for the
proposed pipelined NNADC with a given resolution can be
derived by solving the following optimization problem:

min (1) FoMW = P/
(

2EONB · fS
)
; (2) AADC

s.t.

⎧
⎪⎪⎨

⎪⎪⎩

ENOB ≤∑M
i=1 Ni Ni ∈ {1, 2, 3}

P =∑M
i=1 Pi Pi ∈ {E1, E2, E3}

fS = min1≤i≤M
{
fS,i
}

fS,i ∈ {f1, f2, f3}
AADC =∑M

i=1 As,i As,i ∈ {A1, A2, A3}.
(20)

Here, the first optimal objective FoMW (fJ/c) is a standard
FoM that describes the energy consumption of one conver-
sion for an ADC; and the second optimal objective AADC is
the area of the proposed ADC. We set FoMW as the main
optimal objective, since energy efficiency usually is the most
important consideration for most applications. In this way, as
shown in Fig. 10, we can obtain an optimal design for a maxi-
mum 14-b pipelined NNADC with 12.5-b of ENOB, 11.6fJ/c
of FoMW working at 1GS/s. It showcases the advantages of
our proposed co-design methodology that by incorporating the
consideration of many circuit-level nonidealities in the train-
ing process, it allows us to realize a robust design cascading
up to eleven stages, a level often unattainable with traditional
pipelined ADCs.

C. Full Pipelined NNADC Evaluation

We chose the three distinct stages (highlighted in the red
solid boxes) in Fig. 8 to evaluate the quantization ability of
the proposed full pipelined NNADC. We find that although the
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Fig. 11. 10-b logarithmic NNADC with ten 1-b stages.

NN-inspired design methodology can help us to train a low-
resolution stage to approximate the ideal quantization function
and residue function with high fidelity, the minor discrepancy
between the trained stage and ideal stage will propagate and
aggregate along the pipeline and finally results in a wrong
quantization; therefore, the pipelined stages cannot be infinite
in a practical design.

Our simulations based on various combinations of differ-
ent pipeline stages show that a maximum 14-b pipelined
NNADC working at 1GS/s can be achieved by cascading
nine 1-b stages, one 2-b stage, and one 3-b sub-ADC with
3-b RRAM precision. Note that the last stage of the 14-b
pipelined NNADC does not need to generate residue. The
reconstructed signal of this 14-b ADC is shown in Fig. 10(a),
where the ENOB is 12.5 b under 1-GHz sampling frequency.
We then show the SNDR trend with input signal frequency
in Fig. 10(b). The SNDR begins to degenerate after the
input frequency goes beyond 0.5 GHz, verifying the sam-
pling frequency (×2 of input signal frequency) of the 14-b
NNADC is well above 1 GHz. We also report the differen-
tial nonlinearity (DNL) and INL of the proposed NNADC. It
is simulated at a typical–typical CMOS process corner after
one-time instantiation on RRAM substrate with a fixed lognor-
mal variation σ = 0.05. The DNL is +0.71/−0.42LSB (least
significant bit) and the INL is +0.98/−0.25LSB, in the nor-
mal range of the traditional ADCs (e.g., DNL∈ [−1, 1]LSB,
INL∈ [−1, 1]LSB). To show its robust performance, we per-
form 100 Monte Carlo simulations on the proposed 14-b
NNADC by setting σ = 0.05. The median ENOB we are
able to obtain is ∼12.1 b. We also perform extensive Monte
Carlo simulations to capture the PVT effects from the CMOS
devices and compensate its negative impact using variation-
aware training [11]. The result indicates an ENOB centered
around 12 b can be achieved by the proposed NNADC with
high robustness.

Finally, we train a nonlinear ADC based on the same
methodology proposed in previous work [11] using a loga-
rithmic encoding on the input signal by replacing Vin in (5)
with Vin,log = log2(a+ 1) (a ∈ [0, 1]) to train a 1-b stage. We
find that a 10-b logarithmic ADC with 9.1-b ENOB working
at 1GS/s sampling rate can be achieved by cascading ten such
1-b stages. The reconstructed signal of this 10-b ADC is illus-
trated in Fig. 11. Note that other quantization mechanisms can
also be achieved based on previous work [11].

D. Performance Comparisons

1) Comparison With Existing NNADCs: We first design an
optimal 8-b NNADC by cascading eight 1-b stages (high-
lighted in the red solid boxes) in Fig. 8 and compare it
with previous NNADCs [9], [10]. The comparative data are

summarized in the left columns of Table II. NNADC1 [10],
NNADC2 [9] are two representative NNADCs. Compared with
them, the proposed 8-b NNADC can achieve the same res-
olution with extremely low precision RRAM devices (3-b)
and high energy efficiency. Both NNADC1 and NNADC2
adopt a typical NN (MLP for NNADC1, and Hopfield for
NNADC2) architecture to directly train an 8-b ADC without
the optimization of architecture; therefore, they need high-
precision RRAM to achieve the targeted resolution of ADC.
NNADC1 uses a large size (1×48×16) three-layer MLP as the
circuits model, where parasitic aggregations on the large size
crossbar array degenerates the conversion speed. In addition,
more hidden neurons are used in NNADC1 which consume
more energy. NNADC2 uses 1× ([N · (N+ 1)]/2)×N size to
achieve an N-bit ADC. Since each stage in the proposed 8-b
NNADC resolves only 1-b and has very small size (1× 3× 2
for sub-ADC and 3× 5× 1 for residue block), it can achieve
faster conversion speed with higher energy-efficiency, and
high-resolution with low-precision RRAM devices. Since each
stage in the proposed 8-b NNADC resolves only 1 b and
has a very small size, it can achieve faster conversion speed
with higher energy-efficiency, and high-resolution with low-
precision RRAM devices. Please note that the FoMW reported
in NNADC2 is based on sampling a low frequency (44 kHz)
input signal at high frequency (1.66 GHz). Therefore, it is
considered outside the scope of a Nyquist ADC, and cannot
be compared directly with our work on the same FoMW basis.

2) Comparison With Traditional Nonlinear ADCs and
Nonlinear NNADC: We then compare the 10-b logarith-
mic ADC trained using our proposed method and presented
in Section VII-C with state-of-the-art traditional nonlinear
ADCs [3], [23]. The comparative data are summarized in
the middle columns of Table II. Compared with state-of-the-
art nonlinear ADCs, the proposed 10-b logarithmic ADC has
competitive advantages in area, sampling rate, and energy
efficiency. JSSC09’ [23] uses a pipelined architecture to imple-
ment an 8-b logarithmic ADC. Due to the devices mismatch
of switched capacitors, the ENOB of [23] degenerates 2.3-b
from the targeted resolution. JSSC18’ [3] requires >10-b
capacitive DAC to achieve a configurable 10-b nonlinear quan-
tization resolution; therefore, it can achieve high ENOB but
only works at ∼kHz with a significant area overhead. Since
we adopt the proposed training framework to directly train a
log-encoding signal considering small-sized NN models and
incorporating device nonidealities, we can achieve a logarith-
mic ADC with small area, high sampling rate, and high ENOB.
NNADC3 [43] is a recent work by dedicating the RRAM
conductance to realize the logarithmic quantization function.
Compared with this work, our proposed NNADC can achieve
higher resolution using lower precision devices with improved
performance.

3) Comparison With Traditional Uniform Pipelined ADC
and Pipelined NNADC: We also compare the 14-b uniform
ADC in Section VII-C with state-of-the-art traditional uni-
form ADC. The comparative data are summarized in the
right columns of Table II. Compared with JSSC15’ [24],
the proposed 14-b NNADC has competitive advantages in
sampling rate, ENOB, and energy efficiency. JSSC15’ uses
power hungry op-amps and dedicated calibration techniques,
resulting in the overhead of power consumption and degen-
eration of conversion speed. NNADC4 [44] is a recent work
that uses two-stage architecture to achieve a pipelined ADC.
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It can achieve 7.6-b EONB with 6-b RRAM. The proposed
14-b NNADC uses low-resolution stages with very small NN
size, enabling faster conversion speed with higher energy effi-
ciency. The slight ENOB degeneration of the proposed ADC is
caused by the discrepancy (between the trained stage and ideal
stage) propagation along the pipeline stages. Also note that the
performance of the proposed NNADCs and the performance
of previous NNADCs are based on simulations, while the
performance of the traditional nonlinear ADCs and uniform
ADC are based on measurements.

4) Special 1-b Example: Finally, since RRAM is still an
emerging device with many active research and development
efforts, we would like to provide a projection here by study-
ing the performance of NNADCs with pure 1-b RRAM in
the design. We choose the two-stage architecture to design
a 5-b subranging NNADC whose performance is listed in
the fifth column of Table II. It shows that even with a pure
1-b RRAM, we still can achieve an accurate NNADC with
moderate performance.

In summary, by taking the advantages of traditional
pipelined architecture and the NN-inspired design method-
ology, we can not only use low-resolution RRAM devices
to achieve high-resolution NNADCs whose performance are
superior to state-of-the-art ADCs, but also can realize versatile
quantization schemes on the same hardware substrate which
can be easily configured for different applications, such as
near sensing data processing, in-memory computing bases on
NVM crossbar array.

VIII. CONCLUSION

In this article, we combine the subranging/pipelined hard-
ware architecture and the deep-learning-based building block
design methodology to achieve two new designs of NNADC.
A systematic design exploration is also performed to search
the design space of building blocks to achieve a balanced
tradeoff between speed, area, and power consumption of each
distinct low-resolution stages for the NNADCs. The eval-
uations between the two new designs of NNADC suggest
that pipelined architecture is superior to achieve higher-
resolution with lower precision RRAM. We also evaluate our
design based on various ADC metrics and perform a com-
prehensive comparison of our work with different types of
state-of-the-art ADCs. The comparison results demonstrate
the compelling advantages of the proposed NN-inspired ADC
with pipelined architecture. This work opens a new avenue to
enable future intelligent analog-to-information interfaces for
near-sensor analytics and processing using NN-inspired design
methodology.

REFERENCES

[1] R. LiKamWa, Y. Hou, Y. Gao, M. Polansky, and L. Zhong, “RedEye:
Analog ConvNet Image Sensor Architecture for Continuous Mobile
Vision,” in Proc. ACM/IEEE 43rd Annu. Int. Symp. Comput. Archit.
(ISCA), Seoul, South Korea, 2016, pp. 255–266.

[2] B. Li, P. Gu, Y. Shan, Y. Wang, Y. Chen, and H. Yang, “RRAM-based
analog approximate computing,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 34, no. 12, pp. 1905–1917, Dec. 2015.

[3] J. Pena-Ramos, K. Badami, S. Lauwereins, and M. Verhelst, “A fully
configurable non-linear mixed-signal interface for multi-sensor ana-
lytics,” IEEE J. Solid-State Circuits, vol. 53, no. 11, pp. 3140–3149,
Nov. 2018.

[4] M. Judy, A. M. Sodagar, R. Lotfi, and M. Sawan, “Nonlinear signal-
specific ADC for efficient neural recording in brain–machine interfaces,”
IEEE Trans. Biomed. Circuits Syst., vol. 8, no. 3, pp. 371–381,
Jun. 2014.

[5] M. Buckler, S. Jayasuriya, and A. Sampson, “Reconfiguring the imaging
pipeline for computer vision,” in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Venice, Italy, 2017, pp. 975–984.

[6] S. Angizi, Z. He, A. Awad, and D. Fan, “MRIMA: An MRAM-based
in-memory accelerator,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 39, no. 5, pp. 1123–1136, May 2020.

[7] Y. Xu, C. S. Thakur, T. J. Hamilton, J. Tapson, R. Wang, and A. van
Schaik, “A reconfigurable mixed-signal implementation of a neuromor-
phic ADC,” in Proc. IEEE Biomed. Circuits Syst. Conf. (BioCAS),
Atlanta, GA, USA, 2015, pp. 1–4.

[8] L. Gao et al., “Digital-to-analog and analog-to-digital conversion with
metal oxide memristors for ultra-low power computing,” in Proc.
IEEE/ACM Int. Symp. Nanoscale Archit. (NANOARCH), Brooklyn, NY,
USA, 2013, pp. 19–22.

[9] L. Danial, N. Wainstein, S. Kraus, and S. Kvatinsky, “Breaking through
the speed-power-accuracy tradeoff in ADCs using a memristive neu-
romorphic architecture,” IEEE Trans. Emerg. Topics Comput. Intell.,
vol. 2, no. 5, pp. 396–409, Oct. 2018.

[10] W. Cao, X. He, A. Chakrabarti, and X. Zhang, “NeuADC: Neural
network-inspired RRAM-based synthesizable analog-to-digital conver-
sion with reconfigurable quantization support,” in Proc. Design Autom.
Test Eur. Conf. Exhibit. (DATE), Florence, Italy, 2019, pp. 1456–1461.

[11] W. Cao, X. He, A. Chakrabarti, and X. Zhang, “NeuADC: Neural
network-inspired synthesizable analog-to-digital conversion,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., early access, Jun. 27,
2019, doi: 10.1109/TCAD.2019.2925391.

[12] X. Guo et al., “Modeling and experimental demonstration of a hop-
field network analog-to-digital converter with hybrid CMOS/memristor
circuits,” Front. Neurosci., vol. 9, no. 488, pp. 1–8, Dec. 2015.

[13] A. Fayyazi, M. Ansari, M. Kamal, A. Afzali-Kusha, and M. Pedram, “An
ultra low-power memristive neuromorphic circuit for Internet of Things
smart sensors,” IEEE Internet Things J., vol. 5, no. 2, pp. 1011–1022,
Apr. 2018.

[14] W. Cao, L. Ke, A. Chakrabarti, and X. Zhang, “Neural network-inspired
analog-to-digital conversion to achieve super-resolution with low-
precision RRAM devices,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided
Design (ICCAD), Westminster, CO, USA, 2019, pp. 1–7. [Online].
Available: arXiv:1911.12815

[15] T. F. Wu et al., “14.3 A 43pJ/cycle non-volatile microcontroller with
4.7μs shutdown/wake-up integrating 2.3-bit/Cell resistive RAM and
resilience techniques,” in Proc. IEEE Int. Solid-State Circuits Conf.
(ISSCC), San Francisco, CA, USA, 2019, pp. 226–228.

[16] Y. Cai et al., “Training low bitwidth convolutional neural network on
RRAM,” in Proc. 23rd Asia South Pac. Design Autom. Conf. (ASP-DAC),
Jeju, South Korea, 2018, pp. 117–122.

[17] H.-S. P. Wong et al., “Metal–Oxide RRAM,” Proc. IEEE, vol. 100,
no. 6, pp. 1951–1970, Jun. 2012.

[18] P. Chi et al., “PRIME: A novel processing-in-memory architecture for
neural network computation in ReRAM-based main memory,” in Proc.
ACM/IEEE 43rd Annu. Int. Symp. Comput. Archit. (ISCA), Seoul, South
Korea, 2016, pp. 27–39.

[19] Y. Zha and J. Li, “Liquid silicon-monona: A reconfigurable memory-
oriented computing fabric with scalable multi-context support,” in Proc.
ACM 23rd Int. Conf. Archit. Support Program. Lang. Oper. Syst.
(ASPLOS), New York, NY, USA, 2018, pp. 214–228.

[20] B. Karlik and A. Vehbi, “Performance analysis of various activation
functions in generalized MLP architectures of neural networks,” Int. J.
Artif. Intell. Expert Syst., vol. 1, no. 4, pp. 111–122, 2011.

[21] P. Chen, X. Peng, and S. Yu, “NeuroSim: A circuit-level macro model
for benchmarking neuro-inspired architectures in online learning,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 37, no. 12,
pp. 3067–3080, Dec. 2018.

[22] R. Harjani. Advanced Analog Integrated Circuit Design. Accessed:
Apr. 2019. [Online]. Available: http://people.ece.umn.edu/∼harjani/cour
ses/8331/ADC-pipeline_lecture.PDF

[23] J. Lee et al., “A 2.5 mW 80 dB DR 36 dB SNDR 22 MS/s loga-
rithmic pipeline ADC,” IEEE J. Solid-State Circuits, vol. 44, no. 10,
pp. 2755–2765, Oct. 2009.

[24] H. H. Boo, D. S. Boning, and H. Lee, “A 12b 250 MS/s pipelined
ADC with virtual ground reference buffers,” IEEE J. Solid-State Circuits,
vol. 50, no. 12, pp. 2912–2921, Dec. 2015.

[25] K. Hornik, “Approximation capabilities of multilayer feedforward
networks,” Neural Netw., vol. 4, no. 2, pp. 251–257, 1991.

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on April 23,2022 at 01:52:09 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TCAD.2019.2925391


CAO et al.: EVALUATING NEURAL NETWORK-INSPIRED ANALOG-TO-DIGITAL CONVERSION WITH LOW-PRECISION RRAM 821

[26] Y. Ito, “Approximation capability of layered neural networks with
sigmoid units on two layers,” Neural Comput., vol. 6, no. 6,
pp. 1233–1243, Nov. 1994.

[27] L. Chen et al., “Accelerator-friendly neural-network training: Learning
variations and defects in RRAM crossbar,” in Proc. Design Autom. Test
Eur. Conf. Exhibit. (DATE), Lausanne, Switzerland, 2017, pp. 19–24.

[28] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014. [Online]. Available: arXiv:1412.6980.

[29] M. Abadi et al., “TensorFlow: A system for large-scale machine learn-
ing,” in Proc. 12th USENIX Symp. Oper. Syst. Design Implement.
(OSDI), 2016, pp. 265–283.

[30] S. R. Lee et al., “Multi-level switching of triple-layered TaOx RRAM
with excellent reliability for storage class memory,” in Proc. Symp. VLSI
Technol. (VLSIT), Honolulu, HI, USA, 2012, pp. 71–72.

[31] F. Bedeschi et al., “A bipolar-selected phase change memory featuring
multi-level cell storage,” IEEE J. Solid-State Circuits, vol. 44, no. 1,
pp. 217–227, Jan. 2009.

[32] P. Chen and S. Yu, “Compact modeling of RRAM devices and its appli-
cations in 1T1R and 1S1R array design,” IEEE Trans. Electron Devices,
vol. 62, no. 12, pp. 4022–4028, Dec. 2015.

[33] S. Yu, B. Gao, Z. Fang, H. Yu, J. Kang, and H.-S. P. Wong, “A
low energy oxide-based electronic synaptic device for neuromorphic
visual systems with tolerance to device variation,” Adv. Mater., vol. 25,
pp. 1774–1779, Mar. 2013.

[34] B. Li, L. Xia, P. Gu, Y. Wang, and H. Yang, “MErging the interface:
Power, area and accuracy co-optimization for RRAM crossbar-based
mixed-signal computing system,” in Proc. 52nd ACM/EDAC/IEEE
Design Autom. Conf. (DAC), San Francisco, CA, USA, 2015, pp. 1–6.

[35] Y. Long, X. She, and S. Mukhopadhyay, “Design of reliable DNN accel-
erator with un-reliable ReRAM,” in Proc. Design Autom. Test Eur. Conf.
Exhibit. (DATE), Florence, Italy, 2019, pp. 1–6.

[36] M. Verhelst and A. Bahai, “Where analog meets digital: Analog-to-
information conversion and beyond,” IEEE Solid-State Circuits Mag.,
vol. 7, no. 3, pp. 67–80, Sep. 2015.

[37] M. Prezioso, F. Merrikh-Bayat, B. D. Hoskins, G. C. Adam,
K. K. Likharev, and D. B. Strukov, “Training and operation of an inte-
grated neuromorphic network based on metal-oxide memristors,” Nature,
vol. 521, no. 7550, pp. 61–64, 2015.

[38] A. Levisse, B. Giraud, J. P. Noël, M. Moreau, and J. M. Portal,
“SneakPath compensation circuit for programming and read operations
in RRAM-based CrossPoint architectures,” in Proc. 15th Non-Volatile
Memory Technol. Symp. (NVMTS), Beijing, China, 2015, pp. 1–4.

[39] Y. Deng et al., “RRAM crossbar array with cell selection device: A
device and circuit interaction study,” IEEE Trans. Electron Devices,
vol. 60, no. 2, pp. 719–726, Feb. 2013.

[40] A. Chen, “Utilizing the variability of resistive random access memory to
implement reconfigurable physical unclonable functions,” IEEE Electron
Device Lett., vol. 36, no. 2, pp. 138–140, Feb. 2015.

[41] B. Liu, H. Li, Y. Chen, X. Li, Q. Wu, and T. Huang, “Vortex: Variation-
aware training for memristor X-bar,” in Proc. IEEE/ACM Design Autom.
Conf. (DAC), San Francisco, CA, USA, 2015, pp. 1–6.

[42] F. Alibart, L. Gao, B. D. Hoskins, and D. B. Strukov, “High precision
tuning of state for memristive devices by adaptable variation-tolerant
algorithm,” Nanotechnology, vol. 23, no. 7, 2012, Art. no. 075201.

[43] L. Danial, K. Sharma, S. Dwivedi, and S. Kvatinsky, “Logarithmic neural
network data converters using memristors for biomedical applications,”
in Proc. IEEE Biomed. Circuits Syst. (BioCAS), Nara, Japan, 2019,
pp. 1–4.

[44] L. Danial, K. Sharma, and S. Kvatinsky, “A pipelined memristive neural
network analog-to-digital converter,” in Proc. IEEE Int. Symp. Circuits
Syst. (ISCAS), 2020, pp. 1–5.

[45] S. Weaver, B. Hershberg, and U. Moon, “Digitally synthesized stochastic
flash ADC using only standard digital cells,” IEEE Trans. Circuits Syst.
I, Reg. Papers, vol. 61, no. 1, pp. 84–91, Jan. 2014.

[46] K. Maeda, S. Matsuda, K. Takeuchi, and R. Yasuhara, “Observation
and analysis of bit-by-bit cell current variation during data-retention of
TaOx-based ReRAM,” in Proc. 48th Eur. Solid-State Device Res. Conf.
(ESSDERC), Dresden, Germany, 2018, pp. 46–49.

[47] R. Berdan, C. Lim, A. Khiat, C. Papavassiliou, and T. Prodromakis, “A
memristor SPICE model accounting for volatile characteristics of prac-
tical ReRAM,” IEEE Electron Device Lett., vol. 35, no. 1, pp. 135–137,
Jan. 2014.

[48] C. H. Cheng, A. Chin, and F. S. Yeh, “Novel ultra-low power RRAM
with good endurance and retention,” in Proc. Symp. VLSI Technol.,
Honolulu, HI, USA, 2010, pp. 85–86.

[49] T. Chang, S. H. Jo, and W. Lu, “Short-term memory to long-term
memory transition in a nanoscale memristor,” ACS Nano, vol. 5, no. 9,
pp. 7669–7676, 2011.

[50] Z. Wei et al., “Demonstration of high-density ReRAM ensuring 10-year
retention at 85◦C based on a newly developed reliability model,” in Proc.
Int. Electron Devices Meeting, Washington, DC, USA, 2011, pp. 1–4.

[51] M. Azzaz et al., “Endurance/retention trade off in HfOx and TaOx based
RRAM,” in Proc. IEEE 8th Int. Memory Workshop (IMW), Paris, France,
2016, pp. 1–4.

[52] S. Yu, Resistive Random Access Memory (RRAM). San Rafael, CA,
USA: Morgan Claypool, 2016.

[53] Y.-D. Lin et al., “Retention model of TaO/HfOx and TaO/AlOx RRAM
with self-rectifying switch characteristics,” Nanoscale Res. Lett. vol. 12,
no. 1, p. 407, 2017.

Weidong Cao (Graduate Student Member, IEEE)
received the B.Eng. degree in electrical engineer-
ing from Northwestern Polytechnical University,
Xi’an, China, in 2013, and the M.Eng. degree
in electrical engineering from Tsinghua University,
Beijing, China, in 2016. He is currently pursuing the
Ph.D. degree with the Department of Electrical and
Systems Engineering, Washington University in St.
Louis, St. Louis, MO, USA.

His research interests focus on hardware acceler-
ator, machine learning, in-memory computing, and
VLSI Design.

Liu Ke (Student Member, IEEE) is currently pursu-
ing the Ph.D degree with the Electrical and Systems
Engineering Department, Washington University in
St. Louis, St. Louis, MO, USA.

Her research interest lies in design automation and
hierarchical modeling of custom machine learning
and artificial intelligence accelerators.

Ayan Chakrabarti (Member, IEEE) received the
B.Tech. and M.Tech. degrees in electrical engi-
neering from the Indian Institute of Technology
Madras, Chennai, India, in 2006, and the S.M. and
Ph.D. degrees in engineering sciences from Harvard
University, Cambridge, MA, USA, in 2008 and
2011, respectively.

He is an Assistant Professor with the Department
of Computer Science and Engineering, Washington
University in St. Louis, St. Louis, MO, USA. His
research interests are in the fields of computer vision

and machine learning, focusing on developing systems that can recover
physical reconstructions and semantic descriptions of the world from visual
measurements, for applications in robotics, autonomous vehicles, consumer
photography, and graphics.

Xuan ‘Silvia’ Zhang (Member, IEEE) received
the B.Eng. degree in electrical engineering from
Tsinghua University, Beijing, China, in 2006, and
the M.S. and Ph.D. degrees in electrical and com-
puter engineering from Cornell University, Ithaca,
NY, USA, in 2009 and 2012, respectively.

She is an Assistant Professor with the Preston
M. Green Department of Electrical and Systems
Engineering, Washington University in St. Louis,
St. Louis, MO, USA. She works across the fields
of VLSI, computer architecture, and cyber-physical

systems and her research interests include adaptive power and resource man-
agement for autonomous systems, hardware/software co-design for machine
learning and artificial intelligence, and efficient computation and security
primitives in analog and mixed-signal domain.

Dr. Zhang is the recipient of the NSF CAREER Award in 2020, the DATE
Best Paper Award in 2019, and the ISLPED Design Contest Award in 2013,
and her work has also been nominated for Best Paper Award at DATE 2019
and DAC 2017.

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on April 23,2022 at 01:52:09 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


